Characterization of opioid-binding sites in zebrafish brain.
نویسندگان
چکیده
The pharmacological profile of opioid-binding sites in zebrafish brain homogenates has been studied using radiolabeled binding techniques. The nonselective antagonist [(3)H]diprenorphine binds with high affinity (K(D) = 0.27 +/- 0.08 nM and a B(max) = 212 +/- 14.3 fmol/mg protein), displaying two different binding sites with affinities of K(D1) = 0.08 +/- 0.02 nM and K(D2) = 17.8 +/- 9.18 nM. The nonselective agonist [(3)H]bremazocine also binds with high affinity to zebrafish brain membranes but only displays one single binding site with a K(D) = 1.1 +/- 0.09 nM and a B(max) = 705 +/- 19.3 fmol/mg protein. Competition binding assays using [(3)H]diprenorphine and several unlabeled ligands were performed. The synthetic selective agonists for mammalian opioid receptors DPDPE ([DPen(2),D-Pen(5)]-enkephalin), DAMGO ([D-Ala(2),NMe-Phe(4),Gly(5)-ol]-enkephalin), and U69,593 [(5alpha,7alpha,8beta)-(+)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide] failed to effectively displace [(3)H]diprenorphine binding, whereas nonselective ligands and the endogenous opioid peptides such as dynorphin A showed good affinities in the nanomolar range, although several of the endogenous peptides only displaced approximately 50% of the specifically bound [(3)H]diprenorphine. Our results provide evidence that, although the selective synthetic compounds for mammalian receptors do not fully recognize the opioid-binding sites in zebrafish brain, the activity of the endogenous zebrafish opioid system might not significantly differ from that displayed by the mammalian opioid system. Hence, the study of zebrafish opioid activity may contribute to an understanding of endogenous opioid systems in higher vertebrates.
منابع مشابه
Binding profile of the endogenous novel heptapeptide Met-enkephalin-Gly-tyr in zebrafish and rat brain.
Zebrafish is considered a model organism, not only for the study of the biological functions of vertebrates but also as a tool to analyze the effects of some drugs or toxic agents. Five opioid precursor genes homologous to the mammalian opioid propeptide genes have recently been identified; one of these, the zebrafish proenkephalin, codes a novel heptapeptide, the Met-enkephalin-Gly-Tyr (MEGY)....
متن کاملAcute systemic administration of morphine selectively increases mu opioid receptor binding in the rat brain.
Opioid receptor binding, including the mu, delta, and kappa receptor subtypes, was compared in morphine-injected and control rats. Brain tissues were homogenized and centrifuged either one or two times prior to receptor binding assay. In brain membranes from morphine-injected rats centrifuged once, there was a decrease in mu, but not delta or kappa, binding compared to controls, perhaps indicat...
متن کاملNonconventional opioid binding sites mediate growth inhibitory effects of methadone on human lung cancer cells.
Methadone was found to significantly inhibit the in vitro and in vivo growth of human lung cancer cells. The in vitro growth inhibition (occurring at 1-100 nM methadone) was associated with changes in cell morphology and viability detectable within 1 hr and was irreversible after a 24-hr exposure to the drug. These effects of methadone could be reversed in the first 6 hr by naltrexone, actinomy...
متن کاملCombined autoradiographic-immunocytochemical analysis of opioid receptors and opioid peptide neuronal systems in brain.
Using adjacent section autoradiography-immunocytochemistry, the distribution of [3H]naloxone binding sites was studied in relation to neuronal systems containing [Leu]enkephalin, dynorphin A, or beta-endorphin immunoreactivity in rat brain. Brain sections from formaldehyde-perfused rats show robust specific binding of [3H]naloxone, the pharmacological (mu-like) properties of which appear unalte...
متن کاملGeneration and Characterization of Antibodies against Opioid Receptors from Zebrafish
The opioid system is well conserved among species and plays a critical role in pain and addiction systems. The use of zebrafish as an experimental model to study development and genetics is extraordinary and has been proven to be relevant for the study of different diseases. The main drawback to its use for the analysis of different pathologies is the lack of protein tools. Antibodies that work...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 316 2 شماره
صفحات -
تاریخ انتشار 2006